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Abstract

PDE surfaces, whose behavior is governed by Partial
Differential Equations (PDEs), have demonstrated many
modeling advantages in surface blending, free-form surface
modeling, and surface’s aesthetic or functional specifica-
tions. Although PDE surfaces can potentially unify geo-
metric attributes and functional constraints for surface de-
sign, current PDE-based techniques exhibit certain difficul-
ties such as the restrained topological structure of modeled
objects and the lack of interactive editing functionalities.
We propose an integrated approach and develop a set of
algorithms that augment conventional PDE surfaces with
material properties and dynamic behavior. In this paper, we
incorporate PDE surfaces into the powerful physics-based
framework, aiming to realize the full potential of the PDE
methodology. We have implemented a prototype software
environment that can offer users a wide array of PDE sur-
faces with flexible topology (through trimming and joining
operations) as well as generalized boundary constraints.
Using our system, designers can dynamically manipulate
PDE surfaces at arbitrary location with applied forces. Our
sculpting toolkits allow users to interactively modify arbi-
trary point, curve span, and/or region of interest through-
out the entire PDE surface in an intuitive and predictable
way. To achieve real-time sculpting, we employ several
simple, yet efficient numerical techniques such as the finite-
difference discretization, the multi-grid subdivision, and the
FEM approximation. Our experiments demonstrate many
attractive advantages of physics-based PDE formulation
such as intuitive control, real-time feedback, and usability
to both professional and non-expert users.

Keywords: PDE Surfaces, Geometric Modeling,
CAD/CAM, Dynamic Modeling, Geometric Constraints,
Interactive Techniques.

1. Introduction

Surface modeling techniques are vital to many visual
computing fields such as interactive graphics, CAD/CAM,
animation, and virtual environments. Although a wide
range of free-form splines have been developed during the
last several decades [8, 11, 14, 13], traditional spline-based
techniques can be difficult, time-consuming, less natural,
and counter-intuitive, primarily because free-form splines
are associated with tedious and indirect shape manipulation
through time-consuming operations on a large number of
(oftentimes irregular) control vertices, non-unity weights,
and/or non-uniform knots. In addition, strong mathematical
sophistication is necessary for users.

By contrast, PDE surfaces have recently emerged as a
powerful modeling technique and started to gain popularity
and strength for surface modeling and design. PDE sur-
faces permit geometric objects to be defined and governed
by a set of differential equations. In comparison with tra-
ditional control-point-based techniques, PDE surfaces offer
many advantages:

� Natural physical processes are frequently character-
ized by PDEs. In principle PDE surfaces can be con-
trolled by physical laws, so they are natural and much
closer to the real world. PDEs are potentially ideal
candidates for both design and analysis purposes.

� The formulation of differential equations is well-
conditioned and technically sound. Smooth surfaces
with high-order continuity requirements can be readily
defined through the use of complicated PDEs.

� Smooth surfaces that minimize certain energy func-
tionals oftentimes are associated with differential
equations, so optimization techniques can be inte-
grated with PDE surfaces.

� Many powerful numerical techniques to solve PDEs
are commercially available. Parallel algorithms can



be deployed for large-scale problems in industrial set-
tings.

� Users can easily understand the underlying physical
processes associated with PDEs, therefore, intuitive
and natural control is possible through the modifica-
tion of physical parameters.

� PDE surfaces can potentially unify both geometric and
physical aspects. They are invaluable throughout the
entire modeling, design, analysis, and manufacturing
processes. Various heterogeneous requirements can be
enforced and satisfied simultaneously.

Despite the rapid advances and modeling successes of
PDE surfaces, they demand a lot of novel interactive tech-
niques in order to realize their full potential. Typical mod-
eling difficulties associated with PDE surfaces include:

� The prior work on PDE surfaces mainly concentrates
on elliptic PDEs and is lack of interactive techniques
for direct shape manipulation.

� Besides simple geometric conditions along PDE sur-
face boundaries, as well as the manual editing of PDE
coefficients, there is a lack of formal mechanism for
the direct manipulation of PDE surfaces.

� Traditional elliptic PDE surfaces only result from
Hermite-like boundary conditions (i.e., boundary
curves and their corresponding derivatives up to order
n). More flexible and general boundary constraints are
not yet addressed.

� Conventional PDE techniques are unable to support lo-
calized geometric operations. Global control is less in-
tuitive to manipulate.

To ameliorate it, we [9] recently proposed an interactive
methodology and developed novel modeling techniques that
can facilitate the direct manipulation and interactive sculpt-
ing of PDE surfaces. Our algorithms and design frame-
work are founded on the integrated principle of differential
equations and physics-based modeling. To further promote
the applicability of PDE surfaces in interactive graphics,
CAD/CAM, and virtual engineering, we shall forge ahead
towards the realization of the full modeling potential asso-
ciated with dynamic PDE surfaces. In this paper, we extend
both the geometric coverage and topological variation of
PDE surfaces. Our new system provides users a set of more
powerful sculpting tools than previously-developed point
editing capabilities. These toolkits allow PDE surfaces to be
defined through the use of general, flexible boundary con-
straints. Complicated geometry and diverse types of topol-
ogy for PDE surfaces are readily available in our model-
ing environment. Other typical design tools in our envi-
ronment include trimming, merging, the manipulation of a

set of isoparametric curves and/or arbitrary curve networks,
the editing of any user-specified sub-surface, etc. Using our
system, users are able to enforce both physical requirements
and geometric criteria on PDE surfaces simultaneously with
ease.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews the prior work of PDE surfaces and physics-
based models. In Section 3, we detail the PDE formula-
tion and present our integrated approach. Section 4 dis-
cusses novel techniques of directly manipulating PDE sur-
faces with generalized boundary constraints and flexible
topology. We outline the system implementation and docu-
ment our experimental results in Section 5. Section 6 con-
cludes the paper.

2. Prior Work

In 1989 Bloor and Wilson [1] pioneered a modeling
method—PDE surfaces—that defines a smooth surface as
a solution ofelliptic PDEs. Since their initial application on
surface blending, PDE surfaces have broadened their uses in
surface description, solid modeling, and B-spline approxi-
mation in recent years. In principle, the PDE-based method
has the advantage that most of the information defining a
surface comes from its boundary curves. This permits a
surface to be generated and controlled by very few param-
eters such as boundary-value conditions and global coef-
ficients associated with an elliptic PDE. In addition, this
PDE technique can be used to generate piecewise free-form
surfaces [3]. By varying boundary conditions and control
parameters in PDEs, designers can obtain various surface
shapes. Furthermore, Lowe, Bloor and Wilson [12] pre-
sented a method with which certain engineering design cri-
teria such as functional constraints can be incorporated into
the geometric design of PDE surfaces. Therefore, it may si-
multaneously introduce geometric constraints, aesthetic cri-
teria, and physical and engineering restrictions into design
process. Additionally, Bloor and Wilson [2] have devel-
oped an algorithm that approximates PDE surfaces using
standard B-splines. This work intends to demonstrate that
PDE surfaces are virtually compatible with other matured
and well established spline-based techniques for surface de-
sign, hence PDE surfaces can be readily incorporated into
existing commercial design systems. Later on, in 1993 PDE
solids were formulated in terms of parametric boundary sur-
faces [4], which further expands the geometric coverage of
the PDE methodology. For certain simple boundary con-
ditions, some elliptic PDEs can be solved analytically, i.e.,
PDE surfaces in these cases have a closed-form formulation
that frequently involves functions of Fourier series. How-
ever, for general boundary conditions, a PDE solution will
have to be sought numerically instead. Recently, Bloor and
Wilson [5] derived a set of approximate analytic solutions



for PDEs subject to general boundary conditions. The ap-
proximate solution can be made to approach the true solu-
tion up to any degree of accuracy. Their generic solutions
can be decomposed into a finite sum of Fourier functions
that satisfy PDEs with an additional ’corrector’ term that
satisfies boundary conditions. In 1999, Ugailet al. [19]
developed some techniques for interactively defining and
changing boundary conditions in order to construct PDE
surfaces.

Nonetheless, the above-mentioned techniques can only
afford users indirect and non-intuitive shape manipulation
on PDE surfaces. Physics-based modeling, in contrast, of-
fers users a means to overcome the drawback of indirect de-
sign mechanism associated with PDE surfaces. It is possi-
ble to unify the physics-based modeling methodology with
the PDE approach, mainly because that the dynamic be-
havior of physics-based models is also controlled by cer-
tain differential equations (e.g., Lagrangian equations of
motion). Hence, physics-based modeling augments (rather
than replaces) the existing PDE methodology, offering ex-
tra advantages for shape modeling. Terzopoulos and Fleis-
cher [17] demonstrated simple interactive sculpting using
viscoelastic and plastic models. Celniker and Gossard [6]
developed an interesting prototype system for interactive
free-form design based on the finite-element optimization
of energy functions proposed by Terzopoulos and Fleis-
cher [17]. Terzopoulos and Qin [15, 18] formulated Dy-
namic NURBS (D-NURBS), a novel model for interactive
sculpting. Ye, Jackson and Patrikalakis [20] incorporated
certain functional constraints into the design process of geo-
metric shape. Dachilleet al. [7] presented a haptic approach
for the direct manipulation of physics-based B-spline sur-
faces. Since the majority of physical phenomena can be
characterized by PDEs, it is necessary to bridge the gap be-
tween geometric PDE surfaces and physics-based modeling
approaches towards the realization of the full potential of
PDE surfaces.

3. PDE Formulation

This section formulates PDE surfaces, and outlines prop-
erties of the unified principle of PDE surfaces and physics-
based modeling.

3.1. Elliptic PDEs

Throughout this paper, we focus on the fourth-order el-
liptic PDE (which is a generalized version from [1]):

(
@
2

@u2
+ a

2(u; v)
@
2

@v2
)2X(u; v) = 0 (1)

whereu and v are parametric coordinates over 2-space,
a(u; v) is a smoothing function ofu and v that controls

the behavior of PDE surfaces locally, andX(u; v) =
�
x(u; v) y(u; v) z(u; v)

�>
define the PDE surface

coordinates in 3-space. Note that, in [1] the control param-
eter is a constanta. To offer users more flexibility for in-
teractive manipulation, we replace this constant parameter
using an arbitrary function ofu andv, which can be defined
by users. Becausea(u; v) varies acrossX(u; v), local con-
trol on PDE surfaces can be achieved. Moreover, although
our system is focused on this particular elliptic PDE, our
mathematical derivation and its associated numerical tech-
niques can be readily generalized to other PDEs. Because
(1) is a fourth-order PDE, at least four boundary conditions
are required in order to derive a unique solution. We fur-
ther assume that our PDE surfaces are geometrically either
closed or open along the two parametric directions (i.e.,u

andv), respectively. Therefore, our PDE surfaces may be
topologically flexible, yielding diverse types of surfaces that
are equivalent to four-sided open patches, spheres, cylin-
ders, tori, etc. Reparameterization process can be conducted
without changing the geometry of PDE surfaces if either
u or v belongs to[a; b]. So, we restrainu andv to vary
between0 and1. Various boundary conditions can be im-
posed. To simplify our implementation, we classify PDE
surfaces into three types: (1) open along bothu andv di-
rections, (2) open alongu-direction and closed alongv-
direction, and (3) closed along both directions. The four
boundary conditions in our previous work comprise two
curves which define a pair of the curved surface boundaries
at the opposite side alongu-direction and a pair of their
associated derivative curves defining gradient information
across the two curved boundaries. They are of the follow-
ing form:

X(0; v) = c0(v);X(1; v) = c1(v);
@X
@u

(0; v) = d0(v);
@X
@u

(1; v) = d1(v):
(2)

In this paper, we enhance PDE surfaces and generalize their
boundary conditions to a curve network. This can facili-
tate the cross-sectional design of PDE surfaces from a set
of (non-isoparametric) curves. For instance, consider the
design technique of Gordon surfaces and Coons patches,
our generalized boundary constraints can have the follow-
ing form:

X(ui; v) = fi(v);X(u; vj) = gj(u); (3)

where0 � ui � 1 and0 � vj � 1, andfi(v) andgi(u) are
isoparametric curves. Moreover, a set of non-isoparametric
curves can be easily incorporated into our formulation and
algorithm.

3.2. Numerical Simulation

Previous work on PDE surfaces mainly seeks closed-
form analytic solutions (e.g., Fourier series functions) in or-



der to exploit many attractive properties of explicit formula-
tions for surface modeling. Given arbitrary boundary condi-
tions, however, we must resort to numerical techniques that
guarantee solutions for PDE surfaces of flexible topology.
Numerical algorithms also facilitate the material modeling
of anisotropic distribution and its realistic physical simula-
tion, where there exist no closed-form analytic solutions for
dynamic PDE surfaces. Among many matured techniques,
we employ finite-difference approach in our framework in
the interest of real-time performance.

Figure 1. The point discretization of a contin-
uous surface.

The finite-difference method transforms a continuous
PDE to a system of algebraic equations by replacing all
partial derivatives in differential equations with their dis-
cretized approximation. The system of algebraic equations
can then be solved numerically either through a direct pro-
cedure or an iterative process to obtain an approximate so-
lution of the continuous PDE. We use the central-difference
approximation: f 0(x) = (f(x + h) � f(x � h))=2h,
f
00(x) = [f(x+h)�2f(x)+f(x�h)]=h2, whereh denotes

the spatial step. It is trivial to generalize the computation of
univariate derivatives to all partial derivatives on bivariate
surface geometry, by dividing the[u; v] domain intom and
n discretized points (see Fig. 1), respectively. Now, (1) can
be rewritten as:

AX = b; (4)

whereA is a discretized differential operator in the(mn)�
(mn) matrix form (note that,A is also controlled by the
blending functiona(u; v)), and

X =
�
X1;1 X1;2 � � � Xm;n

�>
;

b =
�
b1 b2 � � � bm�n

�>
:

Different topological types are available. First, the sur-
face can be closed along one parameter direction (e.g.,v),
in which case the points onv = 0 are the same as those
on v = 1. The central-difference scheme suffices for the
computation of partial derivatives with respect tov. Sec-
ond, the PDE surface is open along bothu andv directions.

In this case, the computation of partial derivatives on two
boundary curves requires special care, forward or backward
differences shall be utilized along the open boundary curves
instead. Third, the PDE surface is closed along both direc-
tions, and the central-difference can be applied anywhere
across the surface geometry. Boundary constraints deter-
mine all the point coordinates lying on the user-specified
curves (e.g.,X1;j andXm;j , where1 � j � n). Moreover,
the initial derivative information across boundary curves
determines additional point coordinates in the vicinity of
specified boundaries (e.g.,X2;j andXm�1;j) that are ad-
jacent to two boundary curves atu = 0 andu = 1. Ar-
bitrary boundary conditions can be easily enforced without
any difficulty through the use of finite-difference method.
Note that, in spite of certain combinations of constraint im-
position shown in our experiments, in general this type of
elliptic PDEs allows the boundary conditions to be explic-
itly formulated in arbitrary form. This permits designers to
choose (various) constraints based on diverse design tasks.

3.3. Physics-based Modeling

An elastic deformable model is characterized by its po-
sitionsX(u; v; t), velocities _X(u; v; t) (which stands for
@X(u;v;t)

@t
), and accelerations�X(u; v; t) (i.e., @2X(u;v;t)

@t2
)

along with material properties such as mass, damping, and
stiffness distributions. These quantities are defined as func-
tions�(u; v); 
(u; v), and�(u; v), respectively, which of-
tentimes can be considered to be constant at certain time.
However, these material distributions are allowed to be
modified by users interactively and directly over the sur-
face model in real-time. In general, a continuous dynamic
surface can be discretized into a collection of mass-points
connected by a network of springs across nearest neighbors
(and/or along both diagonals). Other kinds of springs (e.g.,
rotational springs) can be incorporated into the discretized
surface if certain types of dynamic behavior is more desir-
able. We use a mass-spring model because of its simplicity
and the critical need of real-time surface sculpting.

Applying Lagrangian mechanics, we obtain a set of
second-order partial differential equations that govern the
physical behavior of the underlying physics-based model:

M �X+D _X+KX = f ; (5)

whereM is a mass matrix,D is a damping matrix,K is
a stiffness matrix, and the force at every mass-point in the
mesh is the sum of all possible external forces:f =

P
fext:

The internal forces are generated by springs, where each
spring has forcefint = k(l � l0) according to Hook’s law.
The rest length of each spring is assigned during the PDE
initialization stage. Our system allows users to modify the
rest length interactively.



Figure 2. The mass-spring network in the
vicinity of a surface point Xi;j .

We associate the Lagrangian mechanics with the dis-
cretized PDE (refer to (4)) for the unified framework by
attaching mass points to the geometric grid and adding
springs between immediate neighbors on the rectangular
PDE mesh, as shown in Fig. 2, then we obtain a dynamic
version of PDE surfaces:

M �X+D _X+ (K+A)X = b+ f ; (6)

where both the velocity and the acceleration ofX can be
discretized along time axis analogously:

�X � (Xt+�t � 2Xt +Xt��t)=�t
2
;

_X � (Xt+�t �Xt��t)=2�t:

At the equilibrium, if stiffness distributions as well as
the external forcef are zero, (6) reduces to (4) with addi-
tional physical properties. By allowing a PDE surface to
dynamically deform, users will have a natural feeling when
interactively manipulating PDE surfaces, which is lacking
without Lagrangian equations of motion. Furthermore, ma-
terial properties can be introduced to govern the behavior of
the underlying PDE surface. Thishybrid formulation per-
mits users to obtain a surface that satisfies both geometric
criteria and functional requirements at the same time.

We use iteration-based techniques to solve (4) and (6).
Certain variants of iteration techniques exist for solving the
above linear equations [16]. We solve them using Gauss-
Seidel iteration, which starts from an initial guess (approx-
imate values) of the discretized surface points, then recur-
sively calculates the data points in a pre-defined order. After
a finite number of iterations, the value obtained through the
recursive approach are considered to be extremely close to
the accurate solution. To further speed up the convergence
rate of Gauss-Seidel iteration, we take into account the er-
ror factor that is characterized by the difference between
the approximation and the real value. This leads to the
method of Successive Over-Relaxation iteration, or SOR it-
eration. With SOR iteration, anOver-Relaxation factor�

(1 < � � 2) is introduced in order to achieve a better ap-
proximation at each step. When� = 1, it reduces to Gauss-
Seidel iteration. The different choice of� leads to different
convergence speed, and the optimal value of� is allowed to
vary depending on different problems. Our system affords
the interactive modification of�, which is suitable for the
solution of different kinds of linear equations. When using
iterative approaches to solve the approximate linear equa-
tions of PDEs, the initial guess plays a significant role that
affects the convergence speed. Hence extra cares need to be
taken to ensure fewer calculations and better time perfor-
mance. Furthermore, we take advantage of the multi-grid
like subdivision method to speed up the numerical integra-
tion. The surface is first solved on the coarsely sampled
points, and then it is refined into a finer grid whose ini-
tial values are computed either through the simple linear in-
terpolation or more complicated subdivision schemes [10].
The convergence rate of our technique can be greatly in-
creased. In addition, this method allows the user to control
the error bound of the approximated solution.

4. Interactive Editing Toolkits

This section details various interactive techniques for
PDE surface editing.

4.1. Surface Initialization

Our system supports three topological types of PDE sur-
faces. At the start of the initialization phase, the user must
specify the surface type, i.e., whether the surface is open or
closed alongu andv directions. We provide users two dif-
ferent ways to set up the initial boundary conditions of the
PDE. First, users can interactively input some control points
by clicking/dragging the mouse and the system will calcu-
late cubic B-spline curves as the boundary curves, bound-
ary derivative curves, and other special curves that the PDE
surface must interpolate. Alternatively, users are allowed to
define the boundary conditions using certain implicit func-
tions. The point coordinates are sampled along on the im-
plicit curves, and are saved into a data file. The system then
can access data files and initialize the PDE surface based on
implicit function curves. After the boundary conditions are
determined, the PDE surface can be derived from the solu-
tion of linear equations subject to initial conditions. If the
boundary curves are B-splines, we can modify their shape
by changing B-spline control points. Subsequently, the en-
tire PDE surface will be re-computed and modified with
the new boundary conditions. If the boundary curves are
obtained through certain implicit functions, we can change
them in the same way as adding additional conditions dis-
cussed in the following sections.



4.2. Generalized Boundary Constraints

The solution of (1) is influenced by boundary conditions.
In general, there are several types of boundary conditions
according to the information they contain. In this paper, we
consider three kinds of boundary conditions: (1) Hermite-
like conditions; (2) Coons-like conditions; and (3) Gordon-
like conditions in analogy with their corresponding free-
form surface formulation.

Hermite-like conditions include positions and the first or
even higher derivatives of boundary curves. For the fourth-
order PDE such as (1), the boundary conditions may be
Hermite-like (i.e., two boundary curves atu = 0 andu = 1,
and their corresponding first-order derivatives). The two
boundary curves define the edges of the surface and the two
derivative curves determine the gradient across the bound-
aries, which outline the surface shape. Fig. 4 illustrates an
example that connects two PDE surfaces of this type with
control functiona(u; v) = 1:5.

For any four-sided surface patch, there are four bound-
ary curves in general. In this case, the boundary curves are
those atu = 0, u = 1, v = 0, andv = 1, respectively.
This kind of conditions, in analogy with Coons patch, is
considered as Coons-like boundary conditions. Using such
conditions, we can easily obtain surfaces that are open along
bothu-direction andv-direction, or closed alongv and open
alongu. Note that, for surfaces that are closed only along
v, it is equivalent to consider that two boundary curves at
v = 0 andv = 1 are the same. Fig. 5 shows an example of
this type, in which we seta(u; v) = 2:0.

Oftentimes, it is far from enough to define complicated
geometry if only four boundary curves are provided, es-
pecially when we seek the solution for PDE surfaces that
are closed along both directions ofu andv (e.g., tori). In
this scenario, we define a curve network that the PDE sur-
face must interpolate. This kind of boundary constraints
is a direct generalization of Gordon surfaces [11]. Hence,
the Gordon-like boundary conditions consist of a family of
isoparametric curvesX(ui; v) = fi(v) andX(u; vj) =
gj(u), where0 � ui � 1 and0 � vj � 1. We show
an example of this type of geometric construction (refer to
Fig. 6). In Fig. 6, we specify the boundary curves atu = 0,
v = 0 (which is the same asv = 1), v = 0:25, v = 0:5, and
v = 0:75. The control function isa(u; v) = 4:3.

4.3. PDE Surface Subdivision

The large number of sample points of a PDE surface re-
sult in the slow convergence of iteration techniques. We
develop a multi-grid approximation based on popular sub-
division schemes to improve the computation performance.
At first, we can start with a small number of sample points
on the coarsest scale of a PDE surface, the coarse solution

of the PDE surface can be easily obtained after a small num-
ber of iterations. Second, users can refine the coarse mesh
through subdivision and use the new subdivided mesh as
an initial guess for successive iterations. The finer grid is
then computed iteratively to achieve a more accurate and
smoother solution of the PDE surface. During the multi-
grid process, the up-sampling of all boundary curves is
achieved through the use of four-point interpolatory subdi-
vision scheme [10] in order to guarantee the smoothness
requirement of the refined curves. Given control points
fp0i gn+2i=�2, the points at levelk + 1 of the subdivision are
defined by

f p
k+1
2i = pki
pk+12i+1 = ( 1

2
+ w)(pki + pki+1)� w(pki�1 + pki+2):

According to [10], the curve is tightened toward the control
polygon asw ! 0, and for any0 < w < (

p
5 � 1)=8,

the interpolated curve is aC 1 curve. Becausew influences
the smoothness of boundary curves, the system allows the
user to change the value ofw in order to obtain satisfactory
results.

4.4. Modifying Control Function

The functiona(u; v) can also influence surface shape. It
controls the relative smoothness and the level of variable
dependence betweenu andv directions. For a largea i;j at
Xi;j , changes in theu direction occur within a relatively
short length scale, i.e., it is1=ai;j times the length scale
in thev direction in which similar changes can take place.
Consequently, the user can control how boundary condi-
tions influence the interior of a surface by modifying the
length scale (i.e.,ai;j) at arbitrary point on the PDE surface.
In general, the control functiona(u; v) can be interactively
“painted” overXi;j (Fig. 7).

4.5. Joining Multiple Surfaces

A single PDE surface may not satisfy complicated design
requirements, because real-world objects exhibit both com-
plex topological structure and irregular geometric shape.
We shall piece multiple PDE surfaces together for this pur-
pose. In our system, users can joinn � 1 PDE surfaces
sequentially by specifying2n boundary conditions (where
n � 3). Note that,2n conditions are necessary because two
neighboring PDE patches share one common boundary. To
satisfyC1 continuity, the tangent vectors across the shared
boundary must be the same. Note that, because our coef-
ficient functiona(u; v) in (1) may vary throughout theu-v
domain, we can consider the technique of joining multiple
surfaces to be equivalent to generating one “larger” PDE
surface with different local control. Fig. 4 shows such an
example.



4.6. Global and Local Deformation

By changing the boundary curves, users can modify the
entire shape of a PDE surface. However, when the global
appearance of the PDE surface is satisfactory, any subse-
quent sculpting via boundary conditions may destroy cer-
tain already-existing nice features of the underlying sur-
face. Hence, making small-scale changes on a localized
region is more desirable. We enforce additional constraints
to achieve this goal. Note that, the original finite-difference
formulation consists ofm � n equations andm � n un-
knowns, i.e., the coefficient matrix is a square matrix. The
introduction of additional conditions forces the system to
incorporate a set of new equations into the original system.
Consequently, (4) becomes

AcX = bc; (7)

whereAc hasm � n + k rows andm � n columns with
k > 0. We now have more equations than the number of
unknowns. There are two ways to solve such a system.
One way is to treat the constraints as hard constraints, i.e.,
the additional equations must be satisfied. In this case, we
need to explicitly formulate constraints and enforce these
additional constraints within the original equations. This
method works well if the additional constraints are of lin-
ear form (e.g., fixing a subset of certain unknowns or three
points must be co-linear). Alternatively, one can consider
additional conditions as soft constraints and solve the above
equations in the least-square manner [16]. The least-square
approximation is a solution of the following equations:

Ac
>AcX = Ac

>bc:

Now the composite matrix becomes a square matrix, and
the equations can be solved using the aforementioned tech-
niques. Because the additional constraints discussed in this
paper are all expressed as linear equations, we use the hard-
constraint approach to solve the linear system. Note that,
other more robust algorithms such as singular value decom-
position are amenable to our PDE sculpting as well.

4.6.1 Point Editing

Our system permits users to interactively sculpt PDE sur-
faces by enforcing additional constraints on a set of selected
points as well as their normal and curvature:

� One desirable way to manipulate a surface directly is
to specify certain location in 3-space that a PDE sur-
face must pass through. We can achieve this goal by
selecting a point on the surface grid (e.g.,X i;j), then
dragging it to the desired position where the surface
must interpolate. Moreover, users are allowed to edit a
set of points, and the new and modified surface inter-
polates all the selected points.

� We can also manipulate the surface normal on any
point to achieve local editing capability in the vicinity
of the data point. The normal on a continuous surface
can be approximated using the neighboring points:

ni;j =
Xi+1;j �Xi�1;j

2�u
� Xi;j+1 �Xi;j�1

2�v
:

When users modify the normal, our system will com-
pute four neighboring points according to the new nor-
mal direction. In our implementation, we simply en-
force four new equations within (4). The modified sur-
face with the rotated normal at the selected point can
be obtained.

� Users can also modify the curvature at arbitrary point.
We consider the surface curvature at any point along
u-direction andv-direction, respectively.

�u =
k@X
@u

� @2X
@u2

k
k@X
@u
k3

; �v =
k@X
@v

� @2X
@v2

k
k@X
@v
k3

:

This implies that changing curvature will modify the
neighboring points. If we solve the above equations
directly, we need to deal with non-linear equations.
To avoid this, we approximate the solution as follows.
Any curvature modification reflects the distance be-
tween the two neighboring points, so we interactively
edit the curvature information by attempting to move
the neighboring points (e.g.Xi�1;j andXi+1;j for �u
atXi;j). In general, increasing the distance will reduce
the curvature magnitude, while decreasing the distance
will have an opposite effect on curvature value. Af-
ter we compute the new position of relevant neighbors
corresponding to the curvature manipulation, we can
incorporate these known values of data points into the
system and re-solve the equations to derive the new
surface that satisfies the curvature constraints.

4.6.2 Curve Constraints

Although point-based conditions provide designers useful
manipulation tools, point editing is less appropriate when
users are faced with complicate design requirements. We
develop editing tools that afford the intuitive specification
of curve-based constraints. First, users can select a source
curve on the PDE surface by picking points on theu-v do-
main. The curve is allowed to be of arbitrary form because
the selected points may have arbitrary values ofu andv,
giving users more freedom for the effective editing. Sec-
ond, users may specify a cubic B-spline curve as the des-
tination curve which will then be mapped to the selected
surface curve. The B-spline curve shares the same num-
ber of point samples as that of the source curve. We use
B-splines because of many of its nice properties. Third,



our system will attach the source curve to the destination
curve, i.e., the two curves agree on the same shape. The B-
spline destination curve adds a number of new linear equa-
tions into (4), and the PDE surface will be modified accord-
ingly. Users can freely modify or even re-define a desti-
nation curve which leads to different PDE geometry. In
principle, boundary conditions can be special variants of
curve-based constraints. Fig. 8 illustrates an example of
non-isoparametric curve constraints.

4.6.3 Region Manipulation

Certain surface models exhibit special features in specific
regions, hence it is more desirable to develop region-based
editing tools toward the ultimate goal of feature-based de-
sign. Analogous to the aforementioned curve tool, our sys-
tem can map a user-specified B-spline destination patch
onto a region of interest over the PDE surface. First, users
select an area over the PDE surface. Second, users can de-
fine a B-spline patch which are sampled to have the same
number of grid points as those in the source region. Third,
our system attaches the specified area to the B-spline patch.
Users can interactively deform the B-spline patch or create
a new destination patch that imposes area constraints on the
PDE geometry (see Fig. 9). Because the surface mapping
algorithm depends on the structure of sample grid, we only
consider source regions with rectangular grid in the interest
of simplicity.

4.6.4 Area Trimming

Conventional PDE surfaces only support global manipula-
tion, i.e., any local modification results in a new surface
undergone the global deformation. This deficiency severely
restrains users’ freedom of arbitrary surface manipulation
at any localized region(s). To overcome this difficulty, we
develop a new technique that allows designers to freeze any
specified area of a surface which they do not want to change.
This can be achieved in our system by selecting a region in
u-v domain, then any changes outside this region will not
affect any data points inside. In addition, our system of-
fers users functionalities to trim a PDE surface. After the
boundary curve of a selected region is identified, users can
remove material from the PDE surface either inside or out-
side the specified boundary. Multiple boundary curves are
also available in our system, allowing the trimming on mul-
tiple regions simultaneously. The trimming operation on
PDE surfaces can greatly improve the PDE surface’s utility,
making it possible to obtain a PDE surface with complex
boundaries and of arbitrary topological type (see Fig. 10 for
a trimming example).

4.7. Sculpting Dynamic PDE Surfaces

Because the run time of standard numerical solvers de-
pends on the number of sampling points on a PDE surface,
users have to patiently wait for the final stable surface as
the large number of equations are solved within the system.
When the number of sample points is extremely large, the
computation is at the order of seconds/minutes. This signif-
icantly limits the interactivity of surface modeling and ma-
nipulation since no visual feedback between the initial and
final states are provided. To ameliorate it, we consider the
integrated mass-spring model of PDE surfaces whose dy-
namic behavior is governed by (6). The external forcef can
be computed based on various additional constraints. We
then divide the time domain into small time steps and ap-
proximate both velocities and accelerations of data points
through successive time intervals. We can dynamically ma-
nipulate the PDE surface with forces in real-time by solving

(2M+�tD+ 2�t
2K+ 2�t

2A)Xt+�t =
2�t

2(b+ f) + 4MXt � (2M��tD)Xt��t
:

(8)

Additional constraints that control the behavior of the PDE
surface can result from the editing of material properties
such as mass/damping quantities and stiffness distributions.
When additional constraints are incorporated into our mass-
spring model, the surface points gradually evolve along con-
secutive time steps, hence the number of iterations to solve
(8) is very small (less than10). This results in real-time
performance.

5. Implementation and Results

This section outlines the functional components of our
system and presents our experimental results.

5.1. PDE Modeling Environment

We have developed a prototype software environment
that permits users to interactively manipulate PDE sur-
faces with various constraints either locally or globally.
The system is written in Visual C++ and runs on Win-
dows95/98/NT. Fig. 3 illustrates the architecture of our pro-
totype modeling system. In particular, our system provides
the following functionalities:
Boundary Conditions. Users can interactively input and
edit several types of boundary conditions, and obtain PDE
surfaces satisfying these constraints. Boundary conditions
can be modified freely as curve-based constraints. More-
over, the system offers a multi-grid like subdivision scheme
to improve the solution.
Dynamic Models. Our system supports novel physics-
based PDE surfaces including: (1) finite-difference dis-
cretization using mass-spring models; (2) multi-grid like



subdivision for model refinement, and (3) finite element ap-
proximation using B-splines. Material properties and dy-
namic behavior greatly enhance the interactive manipula-
tion of conventional PDE surfaces.
Sculpting Tools. Users can use various manipulation
routines including: (1) patching several PDE surfaces
smoothly; (2) editing points and their normal and curva-
ture at arbitrary locations; (3) modifying boundary condi-
tions and the control function (i.e.,a(u; v)); (4) specifying
and enforcing a set of curve constraints; (5) directly ma-
nipulating a curve network; (6) deforming a set of user-
specified regions to the desired shape; (7) freezing any lo-
cal region(s); (8) applying local operations only on a user-
selected area; (9) trimming the specified part; and (10) mod-
ifying material properties such as mass, damping, and stiff-
ness distributions locally.

Figure 3. System architecture and functional-
ities.

5.2. Results

We use two iterative techniques (Gauss-Seidel and SOR)
to solve the PDE surface subject to various constraints. Ta-
ble 1 details our experiments and their performance. Table 2

compares the CPU time of Gauss-Seidel iteration and SOR
iteration with the multi-grid subdivision. We start solving
the surface on15 � 15 sample grid. The total CPU time
to obtain a solution through the iterative approach over se-
lected grid is the sum of the number from the coarsest level
to the current level along the same column. The choice of
� will also influence the time performance in our numeri-
cal solver. We also document the CPU time of two itera-
tion algorithms used to solve the PDE surface with different
boundary conditions in Table 3.

Grid G-S SOR Curve Surface
15� 15 1438 756 497 102
30� 30 1751 838 1681 457
60� 60 4000 1583 3504 2000

Table 1. Number of iterations for various ma-
nipulation techniques with different sampling
grid. The threshold (0.001) is the sum of all
distance between the corresponding points
in successive steps. G-S is Gauss-Seidel it-
eration, SOR is SOR iteration, �=1.25. Curve
denotes curve editing with 20 sample points,
while Surface stands for the regional manip-
ulation of 10� 10 sample points attached to a
B-spline patch.

Grids G-S SOR(�1) SOR(�2) SOR(�3)
15� 15 1000 109 437 593
30� 30 266 79 171 282
60� 60 1100 156 344 500
120� 120 2954 578 750 1110

Table 2. CPU-time (ms) of different iteration
techniques with the multi-grid like subdivi-
sion, where �1=1.05, �2=1.15, and �3=1.25.

Iteration Fig. 4 Fig. 5 Fig. 6
G-S 8850 3365 5869
SOR 4865 2023 3786

Table 3. CPU-time (ms) of different iteration
methods for solving various PDE surface ex-
amples with sample grid 30 � 30. �=1.25 for
the SOR method.

Besides traditional boundary conditions of the PDE tech-
niques, our system allows users to specify and enforce a
large variety of additional constraints on a set of points,



cross-sectional curves, and surface regions. These con-
straints provide more freedom to designers, making the
design process of PDE surfaces more cost-effective. We
develop our prototype system using finite-difference tech-
niques. The advantages of these approximation techniques
are that they are simple, easy to implement, and suitable for
the incorporation of complicated, flexible constraints. On
the other hand, the time and space complexity are increased
with higher resolution as well as increased accuracy. Our
multi-grid like subdivision method for various levels of re-
finement achieves an anticipated result in our experiments.

6. Conclusion

We have presented a set of interactive algorithms that
support both global and local deformation of PDE surfaces
subject to generalized, flexible constraints. We have pro-
posed a unified methodology that marries PDE surfaces
with physics-based techniques. Physics-based modeling
permits the PDE surfaces to be governed by physical laws
and to be equipped with dynamic behavior, making the
PDE surfaces more realistic and more interactive than the
prior kinematic PDE surfaces. Our prototype software
provides users a wide range of powerful toolkits includ-
ing point-based manipulation such as position modification,
normal editing, and curvature control; cross-sectional de-
sign such as boundary control and the manipulation of non-
isoparametric curves; as well as region deformation such
as sculpting and trimming. These enhancements permit
users to model and edit PDE surfaces intuitively with ease.
Our experiments have shown that generalized, flexible con-
straints offer users more freedom and a more natural inter-
face to manipulate the PDE surface satisfying a set of de-
sign criteria and functional requirements. Our unified ap-
proach and novel PDE techniques greatly expand the geo-
metric coverage and enhance the topological flexibility of
conventional PDE surfaces, improving the utility of PDE
surfaces for modeling and design applications, as well as
helping the realization of the full potential of PDE technol-
ogy in visual computing fields.

Acknowledgments

This research was supported in part by the NSF CA-
REER award CCR-9896123, the NSF grant DMI-9896170,
and a research grant from Ford Motor Company.

References

[1] M. I. G. Bloor and M. J. Wilson. Generating blend surfaces
using partial differential equations.Computer Aided Design,
21(3):165–171, 1989.

[2] M. I. G. Bloor and M. J. Wilson. Representing PDE surfaces
in terms of B-splines.Computer Aided Design, 22(6):324–
331, 1990.

[3] M. I. G. Bloor and M. J. Wilson. Using partial differential
equations to generate free-form surfaces.Computer Aided
Design, 22(4):202–212, 1990.

[4] M. I. G. Bloor and M. J. Wilson. Functionality in solids ob-
tained from partial differential equations.Computing Suppl.
8, pages 21–42, 1993.

[5] M. I. G. Bloor and M. J. Wilson. Spectral approximations
to PDE surfaces.Computer Aided Design, 28(2):145–152,
1996.

[6] G. Celniker and D. Gossard. Deformable curve and sur-
face finite elements for free-form shape design.Computer
Graphics, 25(4):165–170, 1991.

[7] F. Dachille, H. Qin, A. Kaufman, and J. El-Sana. Haptic
sculpting of dynamic surfaces. InComputer Graphics (1999
SIGGRAPH Symposium on Interactive 3D Graphicsi), pages
103–110, Atlanta, Georgia, 1999.

[8] C. de Boor.A Practical Guide to Splines. Springer, 1978.
[9] H. Du and H. Qin. Direct manipulation and interactive

sculpting of PDE surfaces. InProceedings of EuroGraph-
ics 2000, Interlaken, Switzerland, 2000. To appear.

[10] N. Dyn, D. Levin, and J. A. Gregory. A butterfly subdivision
scheme for surface interpolation with tension control.ACM
Transaction on Graphics, 9(2):160–169, 1990.

[11] G. Farin.Curves and Surfaces for Computer-Aided Geomet-
ric Design, A Practical Guide. Academic Press, 1996.

[12] T. W. Lowe, M. I. G. Bloor, and M. J. Wilson. Function-
ality in blend design.Advanced in Design Automation, Vol
1: Computer Aided and Computational Design ASME, New
York, pages 43–50, 1990.

[13] L. Piegl. On NURBS: A survey.IEEE Computer Graphics
and Applications, 11(1):55–71, 1991.

[14] L. Piegl and W. Tiller. Curve and surface constructions using
rational B-splines.Computer Aided Design, 19(9):485–498,
1987.

[15] H. Qin and D. Terzopoulos. D-NURBS: A physics-based
framework for geometric design.IEEE Transaction on Vi-
sualization and Computer Graphics, 2(1):85–96, 1996.

[16] G. Strang.Introduction to Applied Mathematics. Wellesley-
Cambridge Press, 1986.

[17] D. Terzopoulos and K. Fleischer. Deformable models.The
Visual Computer, 4(6):306–331, 1988.

[18] D. Terzopoulos and H. Qin. Dynamic NURBS with geomet-
ric constraints for interactive sculpting.ACM Transaction on
Graphics, 13(2):103–136, 1994.

[19] H. Ugail, M. I. G. Bloor, and M. J. Wilson. Techniques for
interactive design using the PDE method.ACM Transaction
on Graphics, 18(2):195–212, 1999.

[20] X. Ye, T. R. Jackson, and N. M. Patrikalakis. Geomet-
ric design of functional surfaces.Computer Aided Design,
28(9):741–752, 1996.



(a) (b)
Figure 4. The connected PDE surface with
Hermite-like boundary conditions: (a) bound-
ary conditions, where boundary curves are in
red and derivative curves in pink; (b) the sur-
face subject to (a).

(a) (b)
Figure 5. The open PDE surface with Coons-
like boundary conditions: (a) boundary
curves; (b) the corresponding surface.

(a) (b)
Figure 6. The PDE surface with Gordon-like
boundary conditions: (a) the boundary curve
network;(b) the corresponding surface.

(a) (b)
Figure 7. The effect of a(u; v): (a) the PDE sur-
face with a constant function a(u; v) = 1:0; (b)
the surface after changing the value of a(u; v)
on the yellow region to 6:0.

(a) (b)

(c)
Figure 8. Curve editing: (a) the selected
source curve shown in red; (b) the destina-
tion curve shown in blue; (c) the deformed
PDE surface after curve attachment.

(a) (b)

(c)
Figure 9. Region sculpting: (a) the selected
source region shown in red; (b) the B-spline
destination patch; (c) the deformed surface
after area attachment.

(a) (b)
Figure 10. Trimming on the selected regions:
(a) regions of interest in yellow; (b) the sur-
face after the removal of the selected regions.


