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Abstract

PDE techniques, which use Partial Differential Equa-
tions (PDEs) to model the shapes of various real-world ob-
jects, can unify their geometric attributes and functional
constraints in geometric computing and graphics. This pa-
per presents a unified dynamic approach that allows model-
ers to define the solid geometry of sculptured objects using
the second-order or fourth-order elliptic PDEs subject to
flexible boundary conditions. Founded upon the previous
work on PDE solids by Bloor and Wilson, as well as our re-
cent research on the interactive sculpting of physics-based
PDE surfaces, our new formulation and its associated dy-
namic principle permit designers to directly deform PDE
solids whose behaviors are natural and intuitive subject to
imposed constraints. Users can easily model and interact
with solids of complicated geometry and/or arbitrary topol-
ogy from locally-defined PDE primitives through trimming
operations. We employ the finite-difference discretization
and the multi-grid subdivision to solve the PDEs numeri-
cally. Our PDE-based modeling software offers users vari-
ous sculpting toolkits for solid design, allowing them to in-
teractively modify the physical and geometric properties of
arbitrary points, curve spans, regions of interest (either in
the isoparametric or nonisoparametric form) on boundary
surfaces, as well as any interior parts of modeled objects.

Keywords: PDE Solids, Geometric Modeling, Physics-
Based Modeling, Geometric Constraints.

1. Introduction and Motivation

At present, solid modeling [8, 11] has quickly gained
popularity as a convenient and natural paradigm for rep-
resenting, manipulating and interacting with 3D objects in
graphics, animation, and geometric design. This is primar-
ily because a solid model offers engineers an unambigu-
ous shape representation of a physical entity. In essence,
the CAD-based solid representation of a real-world phys-

ical object is both geometrically unambiguous and topo-
logically consistent. There is a wide array of solid mod-
eling techniques including: Constructive Solid Geometry
(CSG), Boundary representation (B-rep), cell decomposi-
tion, trivariate parametric superpatches, and subdivision
solids.

The CSG approach exploits semi-algebraic sets and
Boolean operations on the simple primitives such as cubes,
spheres, cylinders, cones, and tori to construct more com-
plex solid models. The B-rep technique typically defines a
solid object via a set of its boundary surfaces along with ex-
tra topological information. The cell decomposition method
usually uses 2D cross-sectional slices or cubical units (e.g.,
voxels) to approximate complicated solids with hierarchi-
cally structured octree schemes. Nonetheless, prior solid
modeling representation schemes encounter difficulties in
interactive sculpting of solid objects, solid geometry defor-
mation, topology modification, and kinematic and dynamic
analysis of physical solids.

The parametric solids can be constructed through a func-
tion mapping from the trivariate parametric domain of
u, v, w to the physical domain of z,y, z. One typical ex-
ample is free-form solid modeling which combines the ben-
efits of free-form boundary surfaces and interior geometry
within a unified framework and provides users more flexi-
ble design interface for modeling a much larger variety of
objects than aforementioned approaches. It also facilitates
cost-effective algorithms for evaluation and manipulation
of solid geometry. Typical examples of sculptured solids
include trivariate B-splines, Hermite solids and NURBS
solids. However, free-form solid techniques are less natural
and counter-intuitive, primarily because free-form splines
are associated with indirect shape manipulation through
time-consuming operations on a large number of control
vertices, non-unity weights, and/or non-uniform knots. In
general, there are more degrees of freedom than what users
can handle. Furthermore, free-form solids are restrained
to model regular shapes. It is difficult to extend their ge-
ometric coverage to the shape of arbitrary topology with-
out resorting to various non-intuitive geometric constraints.



Subdivision solids generalize the trivariate B-spline solids
to free-form solid models of arbitrary topology by apply-
ing subdivision rules on 3D control lattice. However, the
shape sculpting of subdivision solids is related with indirect
manipulation of control lattice and subdivision rules will
become complicated for a subdivision model with complex
features.

In contrast, PDE solids can effectively model objects
through the use of certain elliptic partial differential equa-
tions of w, v, w subject to boundary conditions. In com-
parison with conventional modeling techniques discussed
above, PDE approach offers many advantages:

e The behavior of PDE models is governed by differ-
ential equations. Solving the PDEs results in both
boundary and the interior information simultaneously.
In principle, PDE solids can be reconstructed from a
small set of heterogeneous boundary/initial conditions,
the interior information will be automatically obtained
by solving the given PDEs, therefore, fewer parame-
ters are required than that of the free-form or subdivi-
sion solids.

e Natural physical processes are frequently character-
ized by PDEs. Hence, PDE models can be controlled
by physical laws, so they are natural and much closer
to the real world. PDEs are potentially ideal candidates
for both design and analysis tasks.

e The formulation of differential equations is well-
conditioned and technically sound. Smooth objects
with high-order continuity requirements can be read-
ily defined through a wide spectrum of PDEs.

e Smooth objects that minimize certain energy function-
als oftentimes are associated with differential equa-
tions, so optimization techniques can be unified with
PDE models.

e PDE solids offer the combined advantages of conven-
tional modeling techniques, such as boundary surfaces
and underlying parameterization for (generalized) cell
decomposition in the interior. The PDE solids have po-
tential to integrate CSG, B-rep and cell decomposition
into a single framework.

e PDE solids can unify both geometric and physical
aspects for real-world models. They are invaluable
throughout the entire modeling, design, analysis, and
manufacturing processes. Various heterogeneous re-
quirements can be enforced and satisfied simultane-
ously.

Although a lot of novel interactive techniques are devel-
oped for PDE surfaces in order to realize their full potential,

there is a lack of natural interfaces and toolkits for the di-
rect sculpting of PDE solids. Typical modeling difficulties
associated with PDE solids include:

e The prior work on PDE techniques primarily concen-
trates on elliptic PDE surfaces. Interactive techniques
for solid modeling are under-explored.

e Besides simple geometric conditions enforced over
PDE solid boundaries, there is no formal mechanism
for the direct editing of PDE solids anywhere across
their domain.

e Traditional elliptic PDE solids are only computed from
a set of regular boundary surfaces. More flexible and
general boundary constraints are yet to be addressed.

e Conventional PDE techniques are unable to support lo-
calized geometric operations for solid models. Global
control is less intuitive to manipulate.

e Despite the great potential to integrate different tech-
niques such as CSG, B-rep, cell decomposition, and
free-form solids, current PDE techniques only make
use of boundary information and many interior prop-
erties and features have not yet been considered.

Recently, we [5, 6] proposed an interactive methodol-
ogy and developed novel modeling techniques that can fa-
cilitate the direct and interactive sculpting of physics-based
PDE surfaces. These techniques allow PDE surfaces of di-
verse types of topology to be defined through general, flex-
ible boundary constraints and operations such as trimming,
merging, manipulating of isoparametric curves and/or ar-
bitrary curve networks, editing user-specified sub-surface,
etc.

To further broaden the accessibility of PDE techniques in
geometric modeling and visual computing, we shall forge
ahead towards the realization of the full modeling poten-
tial associated with dynamic PDE models. In particular,
this paper extends PDE techniques for interactive manip-
ulation of physics-based PDE solids, so that both bound-
ary and interior information of PDE solids can be easily
edited. The system we develop offers users a powerful
solid modeling method with more freedom and flexibility.
In our framework, the PDE solids can be defined by bound-
ary surfaces or a set of boundary curve network. We in-
troduce the boundary surface manipulation, local control
and trimming operations using simple CSG tools and user-
specified datasets on PDE solids to obtain arbitrary topo-
logical shapes. The integration of PDE solids with physics-
based modeling techniques offers users intuitive editing
toolkits for direct sculpting and manipulation of solid mod-
els.



2. Prior Work

Bloor and Wilson [1] pioneered a modeling technique—
PDE method—that defines a smooth surface as a solution of
elliptic PDEs. Since its initial application on surface blend-
ing, PDE approach has broadened its uses in free-form sur-
face design, solid modeling, and interactive surface sculpt-
ing in recent years. In principle, the PDE-based method has
the advantage that most of the information defining an ob-
ject comes from its boundaries. This permits an object to
be generated and controlled by very few parameters such
as boundary-value conditions and global coefficients asso-
ciated with an elliptic PDE. This PDE technique can be used
to generate piecewise free-form surfaces [2]. Lowe, Bloor
and Wilson [9] presented a method with which certain en-
gineering design criteria such as functional constraints can
be incorporated into the geometric design of PDE surfaces.

In 1993, Bloor and Wilson formulated PDE solids in
terms of parametric boundary surfaces [3], which allow to
model the interior of solid objects with boundary surfaces,
and further expand the geometric coverage of PDE method-
ology. Nonetheless, such method is lack of direct manipu-
lation and intuitive sculpting techniques for solid models.

In contrast, Free-Form Deformation (FFD) offers an al-
ternative method for sculpting solid models [13]. The
scheme of FFD for solids involves a mapping from R3 to R3
through certain trivariate Bernstein polynomials and can be
easily integrated with CSG and B-rep solid modeling sys-
tems. However, this technique has difficulties to support
direct manipulation on arbitrary parts of a solid object and
is lack of physically meaningful operations in general.

Physics-based modeling, in contrast, offers users a
means to overcome the drawback of indirect design mech-
anism associated with traditional geometric modeling tech-
niques. Terzopoulos and Fleischer [15] demonstrated sim-
ple interactive sculpting using viscoelastic and plastic mod-
els. Celniker and Gossard [4] developed a prototype system
for interactive free-form design based on the finite-element
optimization of energy functions proposed by Terzopoulos
and Fleischer [15]. Metaxas and Terzopoulos [10] proposed
an approach for creating dynamic solid models by deform-
ing common solid primitives such as spheres, cylinders,
cones, or superquadrics globally and locally. Terzopoulos
and Qin [12, 16] formulated a novel model for interactive
sculpting of Dynamic NURBS (D-NURBS).

Because the dynamic behavior of physics-based mod-
els is also controlled by certain differential equations (e.g.,
Lagrangian equations of motion), it is possible to unify
physics-based modeling methodology with PDE approach.
Therefore, physics-based modeling augments (rather than
replaces) the existing PDE methodology, offering extra ad-
vantages for shape modeling. Furthermore, since the major-
ity of physical phenomena can be characterized by PDEs, it

is necessary to bridge the gap between geometric PDE mod-
els and physics-based modeling approaches towards the re-
alization of the full potential of PDE techniques.

Our previous work [5, 6] proposed an integrated model
which combines the PDE surfaces and the physics-based
modeling techniques to offer users direct sculpting capabil-
ity for the PDE surfaces with generalized boundary con-
straints and user-specified features. However, simple PDE
surfaces fall short in modeling most of the real-world ob-
jects where interior geometry and material distribution are
required for both synthesis and analysis processes. This pa-
per develops manipulation tools for the effective editing of
PDE solids, extending the potential of PDE techniques in
geometric design and engineering analysis of solids.

3. PDE Formulation

This section formulates PDE solids, and outlines prop-
erties of the unified principles of PDE solids and physics-
based modeling.

3.1. Elliptic PDE Solids

Parametric space Physical space

3D PDE

Figure 1. PDE solid from the parametric space
to the physical space.

Bloor and Wilson [3] initially employed the second-

order elliptic PDE to construct solids:
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2 302 bza? + CZW)X(U, v,w)=0, (1)
where u», v and w are parametric coordinates, a, b
and ¢ are smoothing coefficients controlling contribu-
tions of partial derivatives along u, », and w direc-
tions to the resulting PDE solids, and X(u,v,w) =
[ z(u,v,w) ylu,v,w) z(u,v,w) ]T defines the PDE
solid coordinates in 3-space. Fig. 1 illustrates a PDE solid
through the mapping of the parametric space to the physical
space.

Our goal is to directly manipulate PDE solids defined
by boundary surfaces. Therefore, direct control of the
boundary surfaces is more desirable. To make previously-
developed fourth-order elliptic PDE surface sculpting tech-
niques available for solid modeling, it also makes sense to



consider the fourth-order elliptic PDE for solids:
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(a W+b 3?+C W) X(u,v,w) =0, (2)
where a, b, and ¢ stand for a(u,v,w), b(u,v,w) and
c(u, v, w), the coefficient functions of u, », and w that of-
fer local control for the behavior of PDE solids. We replace
the constant smoothing coefficients a, b, and ¢ in previous
work using arbitrary functions over «, v, and w, to offer
users more flexibility of interactive manipulation. Usually
they are set to be constant value over the parametric do-
main except those regions of interest during the manipula-
tion process. Although our system is focused on this type
of elliptic PDEs, our mathematical derivation and its asso-
ciated numerical techniques can be readily generalized to
other PDEs.

To solve (1) and (2), at least six boundary conditions are
required in order to derive a unique solution. We restrain
u, v, w to vary between 0 and 1, because reparametrization
does not change PDE solid geometry if u, v, or w belongs to
[a, b]. The six boundary PDE surfaces define three surface
pairs on the solid boundariesatu = 0,4 = 1, v = 0,v = 1,
w = 0, and w = 1. They are of the following forms:

X(0,v,w) = Ug(v, w), X(1,v, w) = Uy (v, w),
X(u,0,w) = Vo(u, w), X(u, 1,w) = Vi(u,w), (3)
X(u,v,0) = Wo(u,v), X(u,v,1) = Wy(u,v),

where these six surfaces may share corresponding bound-
ary curves with each other, and they are all open surfaces
along their boundaries. Furthermore, because a PDE sur-
face can be derived from a set of Coons-like or Gordon-
like boundary curves, boundary conditions in the form of
arbitrary curve network are also possible to uniquely define
PDE solids. This type of general and arbitrary boundary
conditions provide users more flexible tools to model solid
objects with fewer parameters, and are capable of modeling
solids that must pass through a set of curves that serve as
general constraints.

3.2. Numerical Simulation

We resort to the numerical techniques such as finite-
difference approximation and iterative method for linear
equations to solve the PDE solids for guaranteed solution
especially when additional constraints are enforced. Nu-
merical algorithms also facilitate the material modeling of
anisotropic distribution and its realistic physical simula-
tion. Among many mature techniques, we employ finite-
difference approach in our framework with multi-grid like
subdivision method to improve the system performance.

The finite-difference method divides the continuous
parametric domain of a PDE into discrete grids and approx-
imates all partial derivatives of the sampling points on the

grids by the differences among their neighbors to transform
a continuous PDE to an algebraic equation system. The sys-
tem of algebraic equations can then be solved numerically
either through a direct procedure or an iterative process to
obtain an approximate solution of the continuous PDE.
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Figure 2. (a) The point discretization of part of
a PDE solid; (b) mass-spring network in the
vicinity of the sample point X, ; z.

We use central-difference approximation to approximate
the partial derivatives on trivariate solid geometry, by divid-
ing the [u, v, w] domain into /, m, and n discretized points
(Fig. 2 (a)), respectively. Now, (1) and (2) can be rewritten
in the form as:

AX = b, 4)

where A is a discretized differential operator in (lmn) x
(Imn) matrix form. A is also controlled by the coefficient
functions a(u, v, w), b(u, v, w), and ¢(u, v, w), and

]T

X=[Xy1,1 Xii,2 Ximn

)
b=[b; by 1"

Our PDE solid is open along all of », v, and w di-
rections, so the computation of partial derivatives near to
the six boundary surfaces requires forward/backward dif-
ferences approximation. Boundary constraints determine
all the point coordinates lying on the pre-defined boundary
surfaces (e.g., X1, ; and X;; 7, where 1 < 7 < m,1 <
j < n). Arbitrary boundary conditions can be easily en-
forced using finite-difference method. Note that, in spite
of certain combinations of constraint imposition shown in
our experiments, in general this type of elliptic PDEs al-
lows the boundary surfaces to be explicitly formulated in
arbitrary form. This permits designers to choose (various)
constraints based on diverse design tasks.

blxmxn

3.3. Physics-based Modeling of PDE Solids

As a generalization of elastic deformable surface mod-
els, a deformable solid is characterized by its posi-
tions X(u, v, w, t), velocities X(u, v, w,t) (which stands
for W), and accelerations )"((u,v,w,t) (i.e.,
m;t’%“l) along with material properties such as mass,
damping, and stiffness distributions. These quantities are



defined as functions u(u, v, w), y(u, v, w), and p(u, v, w),
respectively, which often can be considered to be constant
at certain time. However, these material distributions are
allowed to be modified by users interactively and directly
over the solid domain. In general, a continuous dynamic
solid can be discretized into a collection of mass-points
connected by a network of springs across nearest neighbors
(and/or along both diagonals). Other springs can be incor-
porated into the discretized solid if certain types of dynamic
behavior are more desirable. We use a mass-spring model
because of its simplicity and efficiency.

Applying Lagrangian mechanics, we obtain a set of
second-order differential equations that govern the physical
behavior of the underlying physics-based model:

MX + DX + KX =f, (5)

where M, D, and K are the mass, damping, and stiffness
matrix, respectively. The force at every mass-point in the
mesh is the sum of all possible external forces: £ = " f,.:.
The internal forces are generated by springs, where each
spring has force f;,; = k(1 — 1o) according to Hook’s law.
The rest length of each spring is assigned during the PDE
initialization and can be modified interactively.

We associate the Lagrangian mechanics with the dis-
cretized PDE (refer to (4)) for the unified framework by at-
taching mass points to geometric grid and adding springs
between immediate neighbors on the PDE discretization
along u, v, and w, as shown in Fig. 2 (b), then we obtain
a dynamic version of PDE solids:

MX 4+ DX + (K + A)X =b +f, (6)

where both the velocity and the acceleration of X can be
discretized along time axis analogously:

(Xt+At _ 2xt + Xt—At) N (Xt+At _ Xt)

At? ! At

X

The behavior of the dynamic PDE solids are controlled
by both of the Lagrangian equation of motion and the given
PDE with boundary and additional geometric constraints.
The movement of the sample points of the integrated mass-
spring PDE solid model under sculpting is decided by the
PDE with constraints, the mass, damping distributions of
the points, as well as the stiffness of the springs connect-
ing those points. During the sculpting session of boundary
surfaces, we use our physics-based PDE surface model to
achieve interactive surface manipulation. Any deformation
of the boundary surfaces will propagate to the interior of the
PDE solids accordingly. At the equilibrium, if stiffness dis-
tributionsas well as the external force f are zero, (6) reduces
to (4) with additional physical properties. By allowing a
PDE solid to dynamically deform, users will have a natu-
ral feeling when interactively manipulating the PDE solid,

which is lacking without Lagrangian equations of motion.
Furthermore, material properties can be introduced to gov-
ern the behavior of the underlying PDE solid. This hybrid
formulation permits users to obtain a solid that satisfies both
geometric criteria and functional requirements at the same
time.

3.4. Iterative Method

We use iteration-based techniques to solve (4) and (6).
Certain variants of iterative techniques exist for solving the
above linear equations [14]. We solve them using Gauss-
Seidel iteration. To further speed up the convergence rate of
Gauss-Seidel iteration, we take into account the error fac-
tor that is characterized by the difference between the ap-
proximation and the real value. This leads to the method of
Successive Over-Relaxation iteration, or SOR iteration.

However, the discretization of PDE solids results in a
much larger number of linear equations than in the surface
case. This causes the slow convergence rate of iterative
methods. To achieve a faster solution, we take advantage
of the multi-grid like subdivision method to speed up the
numerical integration. It first solves the PDE solid at the
coarsest resolution, and refines the solution for finer grids.
The convergence rate of iteration can be greatly increased.
It also allows users to control the error bound of the approx-
imated solution.

4. PDE Sculpting Toolkits

This section details various interactive techniques for
PDE solid sculpting.

4.1. Solid Initialization

Our system supports two types of initialization for the
PDE solid: initial boundary surfaces and initial boundary
curves. At the start of the initialization phase, the user must
specify the boundary type, i.e., whether the boundary condi-
tions are given as pre-defined surfaces, or connected bound-
ary curve network for the PDE solid.

For initialization with pre-defined boundary surfaces,
the system can obtain the already defined surfaces that are
pieced together and form the outline of PDE solid from file
or use the previous techniques to generate PDE surfaces.
Then using the surfaces as boundary conditions, we can ob-
tain a PDE solid bounded by these surfaces as the solution
of (4). Fig. 4 shows an example.

If users decide to employ the curve network as boundary
conditions, there will be at least 12 curves required to define
the Coons-patch like boundary conditions for the six bound-
ary surfaces. There are two steps in this case: (1) derive the



boundary surfaces from the boundary curves users speci-
fied; (2) solve (4) to obtain the corresponding PDE solid.
We use the Coons-like boundary conditions for the bound-
ary curve network because every two neighboring surfaces
share one boundary curve. To make sure the solved PDE
surfaces satisfy such conditions, the shared boundary curves
need to be defined. We can even define the boundary sur-
faces more precisely by adding more curves as boundary
conditions, which leads to the Gordon-like boundary con-
ditions of the boundary surfaces. Fig. 5 shows examples of
curve network as boundary conditions.

The coefficient functions a(u,v,w), b(u,v,w), and
¢(u, v, w) can also influence the solution of the PDE solid.
These three functions control the relative blending and the
level of variable dependence among , v, and w direc-
tions. Consequently, users can control how boundary con-
ditions influence the interior of a solid by modifying the
length scale at arbitrary location (i.e. aijx, bijz and
ci j,x)- Ingeneral, users can define the coefficient functions
a(u, v, w), b(u, v, w), and e(u, v, w) interactively over X.

4.2. PDE Solid Subdivision

The large number of sample points of a PDE sur-
face/solid results in the slow convergence of iterative tech-
niques. We develop a multi-grid like approximation based
on simple subdivision schemes to improve the computation
performance. Since there are two types of boundary condi-
tions, i.e., curve network and surfaces, we propose different
subdivision schemes to handle two types of boundary con-
straints, respectively.

4.2.1 Curve Subdivision

If boundary conditions come from curves, we shall first
compute boundary surfaces. We start with a small number
of sample points at the coarsest scale of the PDE boundary
surfaces, then the approximated solution of the PDE sur-
face can be easily derived after several iterations. Then,
the PDE solid at the coarsest scale is solved. Users can re-
fine the coarse mesh through subdivision and use the new
subdivided mesh as an initial guess for subsequent iteration
steps. The finer grid is then computed iteratively to achieve
amore accurate and smoother solution of the boundary PDE
surfaces as well as the PDE solid. For further refinement
over the finest grid, the multi-grid subdivision starts with
the up-sampling of all boundary curves through the use of
four-point interpolatory subdivision scheme [7] in order to
guarantee the smoothness requirement of the refined curves.

4.2.2 Surface Subdivision

If boundary conditions come from connected surfaces,
the subdivision scheme should be slightly modified. We

start with the coarsest resolution of the boundary surfaces
through down-sampling to obtain a coarse solution of the
solid. Then during the refining process, we sample more
points over boundary surfaces until it reaches the finest res-
olution. After that, the subdivision process may continue to
reach even finer resolution. In this scenario, we consider the
given boundary surfaces as constrained PDE surfaces, re-
quiring four curves as the boundary conditions and the orig-
inally defined surface sample points as hard constraints. We
then use the four-point interpolatory subdivision scheme to
subdivide the boundary curves and compute unknown sur-
face points by solving the surface PDE subject to the sub-
divided boundary curves and original surface points as hard
constraints.

4.3. Boundary Manipulation

Users can modify the global shape of a PDE solid
through boundary manipulation. Our system permits users
to directly modify the boundary PDE surfaces that define
the PDE solid. To modify a PDE solid through bound-
ary conditions, users must select a boundary surface for the
editing purpose, then use the sculpting toolkits provided by
our system to modify the selected surface.

Typical interactive toolkits for the direct sculpting of
PDE surfaces include:

e Point Editing: PDE surfaces can be interactively
sculpted by enforcing additional constraints on a set
of selected points as well as their normal and curva-
ture. Users can modify a PDE surface by selecting a
set of points on the surface grid, then dragging them
to the desired position where the surface must interpo-
late. Users can also manipulate the surface normal and
the curvature along parametric directions at any point
to achieve a local editing capability in the vicinity of
the data point.

e Curve Constraints: We further provide editing tools
that afford the intuitive specification of curve-based
constraints. Users can select an arbitrary source curve
on the PDE surface, then specify a cubic B-spline
curve as the destination curve which then is mapped
to the selected surface curve, and the PDE surface will
be modified accordingly.

e Area Manipulation: Analogous to the curve tool, our
system can map a user-specified B-spline destination
patch onto a region of interest over the PDE surface.
By selecting an area on the PDE surface and defining a
B-spline patch sampled with the same number of grid
points as those in the source region, our system maps
the B-spline patch to the specified area as additional
constraints, and the modified PDE surface will satisfy
the mapping constraint.



According to the interactive modification of the selected
boundary surface, the PDE solid will be deformed accord-
ingly. Fig. 6 shows two examples of boundary manipulation
with curve constraints. The operations of the boundary PDE
surfaces provide a means for the direct manipulation of the
PDE solid.

4.4. Direct Solid Manipulation

Solid sculpting by way of boundary manipulation is far
from adequate. One attractive advantage of PDE-based
solid modeling is that the solid interior is also controlled by
PDEs without the need of time-consuming specification on
interior material and its distribution. PDE solids provide an
integrated scheme that not only expands the B-rep method
to cover the interior information but also supports Boolean
operations associated with CSG models. More importantly,
users can deform the interior of a PDE solid by enforcing
additional hard constraints inside the solid without chang-
ing the boundary conditions. Additional constraints inside
the solid introduce a set of new equations into the system
to replace the corresponding original equations. Conse-
quently, (4) becomes

AX = bca (7)

where A, and b, are obtained by replacing & equations in
the original system with new ones resulted from the con-
straints with & > 0. The modified equation system can
be solved using the aforementioned techniques. The inter-
active operations inside a PDE solid include local region
sculpting and solid trimming.

44.1 Region Manipulation

Traditional PDE solids only support boundary manipulation
which leads to global deformation of the entire solids. It is
more desirable to offer users editing functionalities on the
interior properties with interactive interface. We develop a
set of toolkits that allow designers to specify any interior
region of a solid, and only enforce local deformation in the
selected region. Alternatively, we can freeze the selected
region and disallow any changes in the specified region. In
our system, this can be done through: (1) interactively spec-
ifying a region in [, v, w] domain, (2) employing some ba-
sic CSG-based tools such as spheres and cubes to navigate
the entire parametric domain to define the region of inter-
est, or (3) embedding datasets within the PDE solid in order
to define the particular region. Subsequently, any changes
within the region will have no effect on points outside the
region. The localized deformation can be achieved easily
because only those equations corresponding to the points of
the specified regions in (4) will be solved. In principle, all
hard constraints can be viewed as some sorts of local defor-
mation. Fig. 7 shows examples of local deformation.

44.2 Solid Trimming

One of the disadvantages of parametric solids is that it is
difficult to model objects of arbitrary topology. Trimming
operation offers an alternative way to model objects with
irregular shape. Our system offers users trimming func-
tionalities on a PDE solid for the sculpting purpose. After
the region of interest is selected, users can remove mate-
rial from the PDE solid either inside or outside the spec-
ified region. Multiple selected regions are also supported
in our system, permitting the trimming on multiple regions
simultaneously. Furthermore, we can use the idea of CSG
models to place trimming tools of the simple shape primi-
tives such as sphere, cube, or cylinder, at any position in-
side the parametric domain, then move the shape along the
u, v, or w directions, all the regions covered by its navigat-
ing path will be chosen/discarded according to the specified
Boolean operations. This type of tools allows the CSG con-
struction of complex objects based on PDE solids. Another
trimming operation comes from the region-fixing method
introduced in above section, i.e., we allow users to embed
datasets into PDE parametric domain and map them to the
physical space to obtained the desired shapes. The map-
ping of the datasets to different PDE solids will result in
different shapes. In essence, this is analogous to the princi-
ple of free-form deformation. The trimming operations on
PDE solids can greatly expand the coverage of PDE solid
applications, making it possible to obtain a PDE solid with
complex boundaries and arbitrary topological types. Fig. 8
shows several trimming examples.

4.5. PDE Solid Dynamics

Because the run time of standard numerical solvers de-
pends on the number of sampling points on a PDE solid,
which is much larger than the number of sample points of
PDE surfaces, it generally takes minutes to obtain the final
stable shape of PDE solids due to the large number of equa-
tions to be solved. When the number of sample points is
extremely large, the computation is time-consuming. This
is less attractive from the standpoint of interactive sculpting
as continuous visual feedback between consecutive states
is strongly desirable. To ameliorate it, we consider the in-
tegrated mass-spring model of PDE solids whose dynamic
behavior is governed by (6). The external force £ can be
computed implicitly based on various constraints placed on
the boundary and the interior of the solid which may change
the positions of selected sample points or regions and cause
deformation of the solid according to the governing PDE
formulation. By dividing the time domain into small time
steps and approximating both velocities and accelerations
of data points through successive time intervals with finite-
difference method, we can dynamically manipulate the PDE



solid with forces in real-time by solving

(M + AtD + A#2K + At2A,)XHHAL = ®
Ati(b, +f) + (2M + AtD)X?! — MX*!-At,

The material properties such as mass/damping quantities
and stiffness distributions can be modified as additional
constraints to control the behavior of the PDE solid. Be-
cause in our mass-spring model, the solid points gradually
evolve along consecutive time steps when enforcing addi-
tional constraints, the number of iterations to solve (8) is
very small, which greatly improves the time performance
of the direct sculpting of PDE solids.

5. Implementation and Results

This section outlines the functional components of our
system and presents our experimental results.

5.1. System Architecture

We have expanded our prototype software environment
that permits users to interactively manipulate PDE surfaces
with various local/global constraints to PDE solids, which
allows the interactive sculpting of PDE solids via boundary
conditions and interior operations. Our system can model
both PDE surfaces and solids with various manipulation
toolkits. The system is written in Visual C++ and runs on
Windows95/98/NT/2000. Fig. 3 illustrates the architecture
of our modeling environment for PDE objects. In particular,
our system provides the following functionalities:

Boundary Conditions. Users can interactively input
and edit boundary surfaces or boundary curves, and obtain
PDE solids satisfying these conditions. Moreover, the sys-
tem offers a multi-grid like subdivision scheme to improve
time performance of the iterative solver.

Dynamic Models. Our system supports novel physics-
based PDE solids including: (1) finite-difference discretiza-
tion using mass-spring models; (2) multi-grid like subdivi-
sion for model refinement and performance speedup. Ma-
terial properties and dynamic behavior greatly enhance the
interactive manipulation of conventional PDE solids.

Manipulating Boundary Curves and Surfaces. Users
can use various manipulation routines to deform the bound-
ary surfaces including: (1) editing points and their normal
and curvature at arbitrary locations; (2) enforcing a set of
curve constraints; (3) deforming a set of user-specified re-
gions; and (4) applying local operations only on a user-
selected area.

Interior Operations. In addition, users can also work
directly on interior of the PDE solids through: (1) interior
deformation with additional constraints inside the solid; (2)
trimming the specified region for complex geometry and ar-
bitrary topology; and (3) modifying coefficient functions as

well as material properties such as mass, damping, and stiff-
ness distributions locally.
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Figure 3. System architecture and functional-
ities.

5.2. Results and Discussion

We use two iterative techniques (Gauss-Seidel and SOR)
together with multi-grid like subdivision techniques to solve
the PDE solid subject to various constraints. Table 1 details
our experiments of PDE solid examples obtained by bound-
ary curves (Cube) and boundary surfaces (Sphere) and their
performance.

Model G-S SOR

Cube-4 | 387.848 | 367.349
Cube-2 37.333 | 32.142
Cube-s 141.396 | 120.536
Sphere-4 | 304.029 | 457.790
Sphere-2 | 19.989 | 16.404
Sphere-s | 31.436 | 28.626

Table 1.

Besides traditional boundary conditions of PDE tech-
niques, our system allows users to specify and enforce a

CPU time (in seconds) for different
solvers. G-S is Gauss-Seidel iteration, SOR
is SOR iteration, ¢=1.25. The "-4", "-2" and
"-s" stand for the 4th, 2nd order PDE, and the
4th order PDE with subdivision, respectively.



large variety of additional constraints on a set of points,
cross-sectional curves, and surface areas on the boundary
surfaces. These constraints provide more freedom to de-
signers, making the design process of PDE solids more
cost-effective. The curve-based boundary conditions make
it even easier for designers to achieve the desired shape of
the PDE solid. We can also enforce additional constraints
directly inside the PDE solid and apply the trimming op-
erations, which facilitate the construction of PDE solids of
arbitrary topology. We develop our prototype system using
finite-difference techniques because they are simple, easy
to implement, and suitable for the incorporation of compli-
cated, flexible constraints. In general, the time and space
complexity is increased with higher resolution as well as
increased accuracy. Our multi-grid like subdivision method
for various levels of refinement achieves anticipated results
in our experiments. The examples shown in this paper are
rendered using POV-Ray and the trimming datasets are pro-
vided by 3DCAFE.com.

6. Conclusion

We have developed a set of interactive algorithms that
support both global and local deformation of PDE solids
subject to various constraints. We proposed a unified
methodology that marries PDE solids with PDE surfaces
and physics-based techniques. The PDE solids can be de-
fined by either boundary surfaces or a set of curves as gen-
eralized boundary conditions. This technique offers users
more freedom and a more natural interface to manipulate
PDE solids satisfying a set of design criteria and func-
tional requirements. The interactive editing of PDE sur-
faces as boundary conditions of PDE solids provides pow-
erful sculpting toolkits for solid modeling. Physics-based
modeling permits the dynamic behavior of PDE solids to be
governed by physical laws, making PDE solids more real-
istic and more interactive than the traditional solid model-
ing techniques. Our software environment provides users a
wide range of powerful manipulation toolkits for the bound-
ary surfaces, including point-based manipulation, cross-
sectional design and the manipulation of non-isoparametric
curves, as well as region deformation. These enhancements
permit users to model and edit PDE surfaces and corre-
sponding solids intuitively with ease. The deformation and
trimming operations inside the solid provide a way to model
objects of arbitrary topology using PDE techniques. Our
unified approach and novel PDE techniques greatly expand
the geometric coverage and the topological flexibility of
conventional PDE solids, improve the utility of PDE solids
for modeling and design applications, as well as help the
realization of the full potential of PDE technology in visual
computing fields.
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@ (b)
Figure 4. A PDE solid generated from given
boundary surfaces: (a) boundary conditions,
(b) the solid (displayed using transparent ma-
terial) subject to (a) with a trimming dataset
inside the solid.

(c2)

Figure 5. Examples of PDE solids subject to
boundary curve network: (al) and (bl) are
two sets of Coons-like boundary curves; (a2)
and (b2) are corresponding PDE solids; (cl)
are Gordon-like boundary conditions, and
(c2) is the PDE solid subject to (c1). The PDE
solids are displayed using transparent mate-
rial with trimming datasets.

(@ (b)
Figure 6. Modifying PDE solids via curve con-
straints of boundary surfaces.

(@) (b)

Figure 7. Direct modification of the trimmed
PDE solid: (a) Directly moving a selected
point on the trimmed data, on the left is the
original dataset, and on the right is the mod-
ified trimmed PDE solid; (b) the deforming
sequence of an trimmed object by rotating
selected interior regions.

(b1) (b2)

Figure 8. Trimming examples. (al) and (a2)
are using CSG trimming operations in a PDE
solid, and the trimmed parts are shown in
red covered by transparent original solids.
(bl) and (b2) are trimming examples using
datasets for different PDE solids. In each of
(b1) and (b2), the object on the left is trimmed
from a PDE cube, and the object on the right
is trimmed from a PDE sphere.



